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Abstract. It is shown that any graph on n vertices containing no clique and no independent set on 
t + 1 vertices has at least 

2./( 2r2o ~2t)) 

distinct induced subgraphs. 

1. Introduction 

All graphs considered here are finite, simple and undirected. G. always denotes a 
graph on n vertices. For  a graph G, let i(G) denote the total number of isomorphism 
types of induced subgra_phs of G. We call i(G) the isomorphism number of G. Note 
that i(G) = i(G), where G is the complement of G and that if G. has n vertices then 
i(G.) > n, as G. contains an induced subgraph on m vertices for each I < m < n. An 
induced subgraph H of G is called trivial flit  is either complete or independent. Let 
t(G) denote the maximum number of vertices of a trivial subgraph of G. 

By the well known theorem of Ramsey (of. e.g., [6]), for every graph G~, 
t(G.) > ½1ogn. On the other hand, as shown by ErdSs in [3], there are graphs G. 
for which t(G) < 2 log n. (Here, and throughout the paper, all logarithms are in base 
2.) The graphs G. for which t(G~) is very small with respect to n (and in particular 
those for which t(G.)< 21ogn) are sometimes called Ramsey graphs. Thereare  
several results that show that these graphs behave like random graphs and must 
contain certain induced subgraphs. In particular, it is shown in [4] that for every 
fixed integer I and any n > no(1), every graph G. satisfying t(G.) < e (I/4° Id i~  con- 
tains every graph on l vertices as an induced subgraph. Similarly, RSdl showed [7] 
that for any constant a > 0 there is a constant b > 0 such that every graph G. 
satisfying t(G.) < a log n, contains every graph on at most b log n vertices as an 
induced subgraph. These results suggest that if t(G,) is small (with respect to the 
number of vertices n) then i(G) is large. In fact, there are several known conjectures 
and results which are precise instances of this statement. In [2] and in [5] it is shown 
that, as conjectured by A. Hajnal, if t(G.) < (1 - e)n then i(G.) > D(en2). In [5] it 
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is also shown that for any fixed k if t(G.) < k then i(G.) > n at'/~). However, both 

these results supply a rather poor lower bound for i(G.) in case t(G.) is much smaller, 
e.g., in case i(G.) < 10 log n. For  this extreme range, Erdfs  and R6nyi conjectured 
that if t(G.) = O(log n) then i(G.) is exponential in n. More precisely, they conjectured 
that for any constant c > 0 there is a constant d = d(c) > 0 such that if t(G,) < 
c log n then i(G.) > 2 d". At the moment we are unable to prove this conjecture but 
we can prove the following theorem which implies, in particalar, that i(G.) is almost 
exponential for graphs G. with t(G.) <_ O(log n). 

Theorem 1.1. For any graph G. on n vertices 

i(G.) >_ 2 "/2'2°'+'''' 

where t = t(G,). 

Notice that, in particular this gives that for any ~ > 0 if n > no(e) then for any 
G. with t(G.) < 2 (~°g")''~-" we have i(G,) > 2 "1-~. We note that the constant 20 can 
be easily improved. We make no attempt to optimize the constants here and in the 
rest of the paper. 

Our proof of Theorem 1.1, presented in the rest of this note, uses methods similar 
to those used in [4t and in I1], but also contains some additional ideas. 

2. Traces and Special Induced Subgraphs 

For a graph G = (V,E) and for a vertex v e V let No(v ) = {u ~ U: vue  E} denote, 
as usual, the set ofaU neighbours ofv in G. I fA ~ V and v ~ V \ A  then No(v ) t') A is 
the trace of v on A. The set of all traces of vertices in V \ A  is denoted by T(A), i.e.: 
T(A) = {No(v ) N A: v ~ V \A} .  

The class of special graphs is defined by induction as follows; every trivial graph 
(i.e., a clique or an independent set) is special. The vertex disjoint union of two special 
graphs on the sets of vertices A and B is special, and so is the graph obtained from 
that union by adding all edges {ab: a e A, b e B}. One can easily prove by induction 
that any induced subgraph of a special graph is special and that any special graph 
is perfect. It follows that for any special graph H on I vertices, t(H) >_ ~ l .  (Indeed, 
if H contains no clique on [~/ l ]  vertices then it is [V0]-l-colorable and hence it 
contains an independent set of size at least I/([x/~]) - I) > x/~). Therefore, the 
maximum number of vertices in an induced special subgraph of an arbitrary graph 
G cannot exceed t2(G). 

For two integers f and n with I _< f < n, let t = t (n, f)  denote the maximum 
hateger t such that any graph G, = (V,E) (on n vertices) containing no induced 
special subgraph on f + 1 vertices contains a set A of at most fver t ices  such that 
I T(A)I -> t, i.e., there are at least t distinct traces of vertices in V \ A  on A, (In case f 
is too small with respect to n and there is no graph G, containing no induced special 
subgraph on f + I vertices we simply define t(n, f)  = oo.) Observe that t (n, f)  is a 
monotone non-decreasing function of n for every fixed f. 
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In this section we obtain a lower bound for the function t (n , f )  which will be 
applied later to establish a lower bound for i(G~) in terms of n and t(G~). First, we 
prove the following lemma. 

Lemma 2.1. Fo r any n and f ,  1 <_ f < n; 

Proof. Ift(n,. f)  = m there is nothing to prove. Hence, we may assume that t (n , f )  < 
oo. By the definition of the function t(n, f )  there is a graph G = G~ = (V, E), ([ VI = n), 
containing no induced special subgraph on f + 1 vertices and no set A of.at most 
f vertices such tha t  T(A) > t(n,f) .  Let g < f be the maximum number of vertices 
of an induced special subgraph of G and let S c E IS3 -- g be the set of vertices of 
such a subgraph. Let m be the maximum cardinality of a subset B of V \ $  such that 
all traces N~(v) Cl S for v s B are equal. Clearly n - f < n - g < m. T(S) < mt(n , f )  
and hence 

,,, _> . ( 2 . 2 )  

We claim that the induced subgraph G [B] of G on B contains no induced special 
subgraph H on more than [g/2] vertices. This is because if there is such a subgraph 
on a set R of vertices, all the vertices in R have the same trace on S and hence we 
can define a partition S = $1 U $2 into two disjoint sets by: 

S l = { s ~ S : s r e E V r s R } ,  $ 2 = { s ~ S : s r ~ E V r s R } .  

Now, the induced subgraphs of G on R U $1, and on R 0 $2 are both special and at 
least one of them has at least I Rt + [g/2] > 0 vertices, contradicting the maximality 
ofg. Thus the claim holds and in particular, since g < f ,  the induced subgraph G[B] 
contains no induced special subgraph on [f/2] + 1 vertices. 

By the definition of the function t we conclude that there is a set C ~ B, 
ICl < [ f /2J  (_<f), such that [{NGtal(b)0 C: b ~ B\C}] >_ t(m, [_f/2J). Since G[B] is 
induced N~EBI(b) N C = N~(b) N C for all b ~ B \  C and hence T(C) >_ t(m, Lf/2J). 
However, in G there is no set of at most f vertices on which there are more than 
t (n , f )  different traces. Hence 

t(m, Lf/2J) _< t(n,f).  (2.3) 

Since t(x, y) is a monotone non-decreasing function of x for every fixed y, (2.3) 
and (2.2) imply (2.1) and complete the proof of the 1emma. [] 

Corollary 2.2. For any two integers n and f ,  where I <_ f < n, 

__> f n  1/l°g2(2f)- . (2.4) t (n , f )  

Proof. We apply induction on n. Since the smallest non-special graph has 4 vertices, 
(2.4) is trivial for n _< 4. Assuming it holds for every n' < n (and every f '  < n') we 
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prove it for n and f. Clearly we may assume f > 3 (since any graph on at most 3 

vertices is special). I f f  > n/2 t h e n f n  1/~°s~(2f) < 4 n < 1 and there is nothing to prove. 

Hence we may assume that 3 < f < n / 2 a n d t h u s [ ~ l > [ n / 2 t ( n , f ) ] . T h e r e f o r e ,  

by Lemma 2.1 (and the monotonicity of t(x, y) in x): 

t(n,f)  >__ t , I.f/2J • (2.5) 

Observe that the function lxv~O~2(2y ) is monotone increasing in x and monotone 
Y 

decreasing in y for all real x > I and y > 1. Therefore, when applying the induction 
hypothesis to the right hand side of (2.5) we can replace [n/2t(n,f)] by n/2t(n,f) 

1 a'io f - , .~ ( n ~lll°gzf = y n  / g2 . 
and Lf/2J by f / 2  and conclude that t ( n , f ) > ~ \ 2 t ~ n . f ~ )  

2 
(2t(n,f))l:o~j.  Thus, in order to complete the proof of (2.4) it suffices to show that 

fn~/~o~:. 2 1 f n111os2(2 f)  
(2t(n,f))i/1os~: >- - 

or, equivalently, that 

i.e., that 

n. 2 l°g~/> 2t(n,f)" n I°~:f/°°~2:+l) 

f 
"--n 1/1°z2(2:) > t(n,f). (2.6) 
2 

If(2.6) holds then (2.4) holds, as needed. Otherwise t(n,f)  > n 1/~°s'(2f) and thus 

certainly (2.4) holds. This completes the induction and establishes the corollary. 
[]  

In order to apply the results of this section for our problem, of estimating the 
number of distinct induced subgraphs of a graph, we need the following corollary. 

Corollary 2.3. Let G = G. = (V, E) be a graph on n vertices containing no induced 
special subgraph on f + 1 vertices. Then, there is a set S ~ V such that 

I T(S)I > 21SIlog n (2.7) 

and 
n 

I T(S)I > f s  1o,(2:--------~. (2.8) 

Proof. Among all the sets S c V for which (2.7) holds choose one for which I T(S)I 
is maximal. (If there is no S ~ O satisfying (2.7) simply take S = ~.) We now show 
that for this S, (2.8) holds. Put  ISl = s and IT(S)[ = t. The vertices in V \ S  have t 
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distinct traces on S. Consequently, there is a set B ~ V\S ,  IBI > (n - s)/t such that 
all members of B have the same trace on S: The induced subgraph G[B] of G on B 
has no induced special subgraph on f + 1 vertices. Therefore, by Corollary 2.2, it 

contains a set C of at most f vertices with at least ~]BI 1/~ogt2/~ distinct traces on it. 
We claim that J 

f iB[  I/l-so2:) < 2 f logn  + (2.9) 1. 

This is because if this is false we can define S' = S U C, Clearly, any two vertices that 
have distinct traces on S also have distinct traces on S'. Moreover, the vertices in 
B \ C  that have all the same trace on S now have at least 2f log n + 1 distinct traces 
on S'. Therefore, since I Cl --- f ,  

IT(S')I > IT(S)I + 2 f logn  > 21SIlogn + 2 f logn  > 21S'llogn 

and hence (2.7) holds for S' contradicting the maximality of I T(S)I in the choice of 
n - - s  

S. Thus (2.9) holds, and since [BI > ~ this gives 
t 

i.e., 

< 2f log  n + 1, 

n - - S  
t > (2f2 logn + f)lostz:)" (2..10) 

By Ramsey theorem as mentioned in the introduction f >_ ½1ogn. Also, since 
n 

J T(Sjl >- 21SI, ISI = s _< ~ and since f _> 3 (2.10) implies that 

2"n n n 

showing that (2.8) holds and completing the proof. []  

3. The Number of Distinct Induced Subgraphs of Ramsey Graphs 

In this short section we present the proof  of Theorem 1.1. We need the following 
simple lemma. 

Lemma 3.1. Let G = G, = (V, E) be a graph, and let S ~_ V. Then 

21rts)l 
i(G) >__ 

(I T(S)I-  ISI : "  
In particular,/f [ T(S)I > 21SI log n then 

21rts)l 
i(G) > ~ >_ 2 Ir(s)l/2. 
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Proof. Put  s = IS I, t = I T(S) I and let v 1, v2,.- . ,  vt ~ V\S  be t vertices having pairwise 
distinct traces on S. For  each subset 1 _.q {1,2 . . . . .  t}, let GI be the induced sub- 
graph of G on S U {vi : ie  I}. We claim that there is no set I- of more than 
(t + s)(t + s - 1)- . . . .  (t + 1) distinct subsets I ~ {1, 2 , . . . ,  t} such that all the graphs 
GI, I e I are isomorphic. To prove this claim, suppose it is false and let f be such 
a set. Let T + s (t_< t) be the number of vertices of each of the graphs GI, 1 e / .  Since 
all these graphs are isomorphic there are bijections ~i: V(G~) = {vl: i ~ 1} U S 
{1,2 . . . . .  T +  s} such that ~br 1 o ~k~ is an isomorphism between Gt and Gr for all 1, 
I '  ~1. However, since III > ( ? +  s)(T+ s -  1 ) . . . . . (T+  1) there are two distinct 1, 
1' e I" such that ~k~ and ~k r are identical on S, i.e., tpr 1 o ~bi(s ) = s for all s ~ S. Since 
Ill = II'1 (---T) and I ~ I' there is an index i ~ I \ I ' .  Suppose f i r  1 o ~'x(vi) = v~. Then 
j e I' and hence vj ~ v~. By their definition v~ and vj do not have the same trace on 
S and hence ~br t o ~bl is not an isomorphism between GI and Gr, contradicting the 
fact it is. Therefore the claim is true. Altogether there are 2 t subgraphs G~ and since 
no set of (t + s) s of them can be a set or pairwise isomorphic graphs the assertion 
of Lemma 3.1 follows. [ ]  

Proof of Theorem 1.1. Let G = G, = (V, E) be a graph on n vertices and let t = t(G) 
denote the maximum number of vertices of an induced subgraph of it. Then G, 
contains no induced special subgraph on t 2 + 1 vertices. Therefore, by Corollary 

n n 
2.3 there is a set S ~ V such that l T(S)l > 2[Sl log n and l T(S)l > > 

- -  ~ 1 0  log(2 t  2) - -  t 2 0  iog(2t )  " 

The assertion of Theorem 1.1 now follows from Lemma 3.1. []  
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